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Abstract—Southbound message delivery from the control plane to the data plane is one of the essential issues in multi-tenant clouds.
A natural method of southbound message delivery is that the control plane directly communicates with compute nodes in the data
plane. However, due to the large number of compute nodes, this method may result in massive control overhead. The Message Queue
(MQ) model can solve this challenge by aggregating and distributing messages to queues. Existing MQ-based solutions often perform
message aggregation based on the physical network topology, which do not align with the fundamental requirements of southbound
message delivery, leading to high message redundancy on compute nodes. To address this issue, we design and implement VITA, the
first-of-its-kind work on virtual network topology-aware southbound message delivery. However, it is intractable to optimally deliver
southbound messages according to the virtual attributes of messages. Thus, we design two algorithms, submodular-based
approximation algorithm and simulated annealing-based algorithm, to solve different scenarios of the problem. Both experiment and
simulation results show that VITA can reduce the total traffic amount of redundant messages by 45%-75% and reduce the control
overhead by 33%-80% compared with state-of-the-art solutions.

Index Terms—Southbound Message Delivery, Message Queue, Virtual Network Topology, Virtual Private Cloud.
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1 INTRODUCTION

Nowadays, as more enterprise customers migrate their on-
premise workloads to the cloud, the user base of a cloud provider
overgrows in just a few years [2]. In current cloud deployment
model, tenants deploy virtual machines (VMs) on compute nodes
in the cloud data plane and manage the VMs through unified
restful APIs by the cloud control plane [3], [4]. The control
plane processes tenants’ requests, and sends network configuration
messages, also called southbound messages, to computes nodes
[5]. Over the past decade, we are observing rapid growth of the
number of customers and the continuous expansion of individual
network size. As a result, the number of southbound messages is
mounting a rapid pace [6]. Thus, how to deliver the southbound
messages with low provisioning latency and low control overhead
has become a critical issue for hyper-scale cloud deployments [7],
[8], [9], [10].

A natural method to deliver southbound messages is direct
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end-to-end transmission via message passing interfaces (MPI) [11]
or remote procedure call (RPC) [12]. For example, as one of
the common protocols in distributed microservice frameworks,
RPC establishes TCP links between servers and clients. In this
way, each compute node directly communicates with controllers
and receives all the required messages. The downside is that, as
the network scale increases, the direct communication method
will cause a high load on the control plane, leading to message
congestion or loss, especially when encountering burst southbound
traffic [13]. This insight has been discovered by the experiments
[14], in which gRPC [15] and Apache Thrift [16], two widely
used open-source RPC frameworks, are tested. The results show
that when the payload size of each message increases from 1KB
to 10KB without limitation on the sending rate, the successful
queries per second drops from 10K to 4K.

Therefore, it is necessary to reduce southbound control over-
head in a large-scale cloud by decoupling the data plane from
the control plane [17], [18]. As an alternative, the Message
Queue (MQ) model is one of the most widely adopted messaging
solutions used to build cloud infrastructure and tenant applications
in the cloud [19], [20]. Specifically, a MQ server is used as
a messaging middlebox between the control plane and the data
plane, which implements multiple queues for storing and forward-
ing messages. Each queue is responsible for forwarding a set of
messages with the same attributes (e.g., subnet). Under this model,
the controller sends messages to different queues according to
message attributes, while compute nodes receive messages in one
or more queues by their own needs [21], [22]. The key step in the
MQ model is to determine which queues the controller should send
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Fig. 1: Illustration of interaction between controllers and compute nodes. There are one controller and four compute nodes in a cloud. VMs of
three VPCs are distributed in those nodes. VM1-1, VM1-2, VM1-3 and VM1-4 belong to VPC 1. VM2-1, VM2-2, VM2-3 and VM2-4 belong
to VPC 2. VM3-1, VM3-2, VM3-3 and VM3-4 belong to VPC 3. There is a message queue server containing 2 queues in the second and third
subplots. The three diagrams denote three different ways of message delivery (RPC, NG and VITA).

each message to, and which queues each compute node receives
messages from.

One of the most intuitive ideas inside the MQ model is to
specify a queue for each compute node. That is, the messages are
classified at the granularity of a single computing node. In this
way, the control plane sends each message to an exclusive queue,
and the corresponding computing node can obtain the message
by subscribing to the corresponding queue. However, in reality,
compared to a large number of compute nodes (such as 5,500
compute nodes in CERN [6]), a message queue server commonly
supports a relatively small number of queues. For example, the
experiments of Apache Kafka (a well-known open-source message
queue) from [23] show that setting up a few hundred queues will
lead to frequent crashes of the message queue server. Therefore,
messaging at the granularity of a single compute node is not
feasible in a large-scale cloud, and we must carry out message
aggregation with a proper granularity.

A common way for message aggregation is Node Grouping
(NG) in OpenStack Nova [24]. That is, the compute nodes are
divided into several groups, and each group of nodes shares one
queue. Though this solution can reduce the number of required
queues on the server, it brings a new challenge: message redun-
dancy on each compute node. Specifically, once a compute node
subscribes to one queue, it should receive all the messages from
this queue to catch valid messages. Suppose that a compute node
expects to receive the network configuration message m1, and
two messages m1 and m2 are sent to the same queue. Under this
situation, the compute node will receive the redundant message
m2 because the node can only judge whether the message is
valid or not after receiving it. In this way, message redundancy is
inevitable. The redundant messages will occupy valuable network
bandwidth and memory of compute nodes, resulting in a decrease
in the overall throughput. For example, when 10,000 compute
nodes are divided into 100 groups in a practical scenario, each
compute node in the same group will receive the same set of
messages while about 99% of messages are redundant. This will
significantly reduce the resource utilization of compute nodes.

The underlying cause for high message redundancy is that
NG’s tight dependency on physical network topology does not
align with the fundamental requirements of southbound message
delivery in a multi-tenant cloud environment. That is, although
VMs of a specific tenant are distributed in multiple nodes (likely
across node groups), they are bounded to a logical concept called
virtual networks [25]. Its implementation by cloud provider is
Virtual Private Cloud (VPC) [26], [27], which is a virtual L2
overlay built on top of L3 underlay network. VPC offers isolation
and privacy for tenants, and allows tenant admins to configure IP
ranges, subnets, security groups, QoS policy with its boundary
[26], [27], [28]. Therefore, it is more efficient to aggregate mes-
sages with VPC (instead of compute node) as the granularity to
achieve low message redundancy.

In this paper, we design a virtual network topology-aware
southbound message delivery system, called VITA. Specifically,
we use VPC as the granularity to aggregate southbound messages.
At the same time, considering a large number of VPCs, how
to aggregate messages of these VPCs into a limited number of
message queues with both low control overhead and low message
redundancy is also very difficult. To solve this issue, we propose
two algorithms, submodular based approximation algorithm and
simulated annealing based algorithm, to solve different scenarios.
Both experiment and simulation results show that VITA dramat-
ically reduces the total traffic amount of redundant messages
by 45%-75% and reduces the control overhead by 33%-80%
compared with state-of-the-art solutions.

The rest of this paper is organized as follows. Section 2
gives background and motivation through an example. Section 3
presents the system overview of VITA. Section 4 formulates the
southbound message delivery problem and proposes two message
aggregation and distribution algorithms for different message
delivery scenarios. Section 5 gives the subscription procedure of
the VITA agent on each compute node. The results of the testbed
and large-scale simulations are presented in Section 6. Section 7
gives some related works for this paper and Section 8 concludes
the paper.
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2 BACKGROUND AND MOTIVATION

In this section, we first give an introduction to southbound mes-
sage delivery in clouds. Then we provide an example to illustrate
the pros and cons of both RPC and NG, which motivate the idea
of virtual network topology-aware southbound message delivery
scheme.

2.1 Southbound Message Delivery
Southbound message, also called network configuration message,
is a vital information carrier for the interaction between the control
plane and the data plane in the cloud [5], [7]. As the size of
the cloud network increases, so does the number of southbound
messages. Thus, how to achieve resource-saving and efficient
southbound message delivery has become a fundamental problem
in clouds [8], [9], [10].

There are two typical methods for southbound message de-
livery in cloud networks. A natural one is the distributed end-
to-end communication model [29], which provides direct com-
munications between the controller and compute nodes. For
example, as one of the most common protocols in distributed
frameworks, Remote Procedure Call (RPC) [12], [13] transmits
serialized messages via custom TCP protocols or HTTP. As cloud
network scale increases, the distributed communications result in
massive control overhead, which leads to a significant increase
in message delivery delay and a drop in throughput. To cope
with this problem, Message Queue (MQ) [23] is adopted by
many cloud platforms (e.g., RabbitMQ in OpenStack [30] and
Amazon Message Queuing Service in AWS [27]). MQ, as an
independent component in distributed systems, is a more scalable
southbound message delivery solution, which provides decoupling
and asynchronous communication of the control plane and data
plane. Communications between the control /data plane and the
MQ server also relies on the TCP protocol. Considering a large
amount of compute nodes and a relatively small number of
queues supported by an MQ server, the Node Grouping (NG) [24]
method divides those nodes into several groups according to some
underlay network attributes e.g., subnet. Then the controller sends
the messages of the compute nodes in the same group to the same
queue. The compute nodes themselves receive messages in one
or more queues by their own needs. However, the NG method
inevitably brings redundancy to southbound messages.

As the concept of Virtual Private Cloud (VPC) [26], [31], [32]
emerges in both the public and private clouds, the message itself
usually contains the attributes of VPC. VPC builds an isolated
virtual network environment for cloud servers, cloud containers,
cloud databases, and other resources that users configure and
manage independently, improves the security of users’ cloud
resources, and simplifies users’ network deployment. With the
help of VPC, we can study a new perspective on the problem
of southbound messaging through the virtual network topology.

2.2 A Motivation Example
A simple example of southbound message delivery is illustrated
in Fig. 1. There are 1 controller, 4 compute nodes and 3 VPCs in
the cloud. The VMs of 3 VPCs are distributed on those compute

schemes n1 n2 n3 n4 data plane control plane
RPC 3 2 3 2 10 10
NG 3 3 3 3 12 6

VITA 3 2 3 3 11 3

TABLE 1: The number of messages received by each compute node,
received by the data plane, and sent by the control plane through three
delivery schemes.

nodes. Specifically, VMs of VPC 1 are deployed on compute nodes
n1 (VM1-1), n2 (VM1-2, VM1-3) and n3 (VM1-4). VMs of VPC
2 are deployed on compute nodes n1 (VM2-1), n2 (VM2-2), n3

(VM2-3) and n4 (VM2-4). VMs of VPC 3 are deployed on nodes
n1 (VM3-1), n3 (VM3-2) and n4 (VM3-3, VM3-4). For ease of
explanation, we assume that the control plane will send a network
configuration message for each VPC. The performance results are
summarized in Table 1.

RPC establishes connections between the controller and all
compute nodes in Fig. 1(a). If a message will be sent to a VPC,
the controller sends this message to the destination nodes, which
contain VMs of this VPC, in turn. A mapping table is maintained
in the database to record the mapping relationship between the
VPCs and the compute nodes. To realize the southbound message
delivery, the controller queries this table and determines compute
nodes to which the messages should be sent. For example, to
process the configuration message of VPC 1, the controller queries
the database and obtains the IP addresses of compute nodes (i.e.,
n1, n2 and n3). Then, the controller will send the configuration
messages to these three nodes through RPC. As a result, the
controller sends 10 messages in total and the data plane receives
10 messages accordingly.

The Node Grouping (NG) method divides the four compute
nodes into two groups, as shown in Fig. 1(b), and uses a message
queue server for storing and forwarding messages. All the queues
are identified by topics. The controller sends message to one queue
by publishing messages to a topic, and each compute node receives
messages from one queue by subscribing to a topic. The MQ
server in this example contains two queues, which are identi-
fied by topics group1 and group2, respectively. On processing
the configuration message of VPC 1, the controller queries the
database and obtains the nodes which require this message. The
nodes n1 and n3 are in group 1 and group 2, separately. So, the
controller should send two messages with the same content to the
MQ server. One is published to topic group1, and the other is
to topic group2. In all, the controller sends 6 messages in total.
However, as the compute nodes in the same group will receive
all the messages from a queue, a node will receive some invalid
messages. For example, node n2 receives 3 messages of VPCs 1,
2, and 3, but only 2 messages from VPCs 1 and 3 are necessary.
Node n4 receives 3 messages with 1 unnecessary message of VPC
1. As a result, all the compute nodes in the data plane receive 12
messages, 2 of which are unnecessary.

2.3 Our Intuition

We observe that the two solutions of southbound message delivery
have advantages and disadvantages. RPC allows each compute
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node to receive only the required messages without any redun-
dancy. In small-scale clouds, perhaps this is the most proper
solution. However, in large-scale distributed cloud scenarios, the
pressure of the control plane will be weighty, and the message
delivery latency may be very high [14]. As for the node grouping
solution, the pressure of the control plane can be reduced while
the load on the data plane (redundant messages) significantly
increases.

A question immediately following the above discussion is that
can we do better by using MQ with less redundant messages and
low control overhead? Clearly, we should use as many queues
as possible for southbound message delivery. However, too many
queues will lead to frequent crashes of the message queue server
[23]. Therefore, how to effectively aggregate many messages into
a limited number of queues is necessary. As mentioned above,
southbound messages have not only physical attributes (e.g., IP
address of the destination node) but also virtual attributes (e.g.,
VPC ID) under the virtual private cloud architecture. Moreover,
messages from the same VPC are more likely to be sent to the
same virtual address in the virtual network [31], [33]. In other
words, aggregating and delivering southbound messages according
to the attributes of the VPC is more intuitive and efficient than
existing solutions.

As shown in Fig. 1(c), since there are 3 VPCs and 2 queues
in this example, the controller aggregates the messages of VPCs
1 and 2, and sends these messages to the same queue (with topic
vn1). Meanwhile, the controller sends the messages of VPC 3 to
another queue (with topic vn2). Each compute node subscribes to
different topic(s) according to the messages it needs. For example,
because node n2 only needs the messages of VPCs 1 and 2, it
only subscribes to topic vn2. Similarly, since node n4 needs the
messages of VPCs 2 and 3, it should subscribe to both topics
vn1 and vn2. Accordingly, the controller sends 3 messages,
and all the compute nodes in the data plane totally receive 11
messages, 1 out of which is unnecessary. As a result (shown in
Table 1), this scheme achieves lower control overhead compared
with RPC, and achieves better data/control plane performance
compared with NG. Motivated by this example, we design a virtual
network topology-aware southbound message delivery scheme,
called VITA.

3 VITA OVERVIEW

3.1 System Overview

As shown in Fig. 2, VITA mainly consists of three parts: the con-
trol plane (composed of the controllers), the data plane (composed
of the compute nodes), and the message queue server. Specifically,
the control plane consists of a set of distributed microservices,
and one of its functions is to manage the virtual network through
southbound message delivery. To build the correspondence be-
tween VPCs and topics, a mapping table from VPCs to topics,
instead of VPCs to IPs, is maintained. We will describe in detail
how to determine the correspondence in Section 4.

VMs belonging to different VPCs are distributed on different
compute nodes in the data plane. For more efficient implementa-
tion, a control agent is designed on each node to be responsible
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Fig. 2: System overview of VITA. VITA mainly consists of three parts.
The control plane is responsible for determining the correspondence
between VPCs and topics. The data plane is responsible for sub-
scribing to topics and configuring VMs or OVS. The message queue
server is responsible for the asynchronous communication between
the control and data planes. Besides, a database maintains a mapping
table from VPCs to topics.

for subscribing to topics, distinguishing messages, and parsing
requests. The agent manages all virtual machines on the node and
knows which VPCs they belong to. We give a detailed design for
the agent in Section 5 to meet the dynamic update requirement.

As an essential component, the MQ server is responsible for
the asynchronous communication between the control and data
planes. However, this is not the focus of our paper. In Section 6,
we test the performance of our proposed algorithms on different
open-source MQs to illustrate the efficiency and versatility of the
VITA system.

3.2 Workflow of VITA
Fig. 2 also briefly describes the system workflow. The system
process is mainly triggered by two events. One is the config-
urations by a tenant. When one tenant configures their VPC
through provided API (e.g., subnet, security group), the control
plane parses the request and constructs corresponding southbound
messages. Then it queries the database and determines which
topic(s) the messages should be published to. Next, the controller
sends the messages to corresponding queues in the MQ server via
the specified TCP port and asynchronously waits for the reply of
the processing result. The other one is the launch of a new VM on
the compute node. When a VM is added or migrated, the control
agent queries the database to get the topics. Then it subscribes
to those topics for receiving the required messages of different
VPCs. Finally, the agent receives messages from specific queues
and judges whether it is valid or not according to the VPC ID of
the message. If no VM needs this message, it will be discarded.
Otherwise, the control agent will perform corresponding opera-
tions (e.g., setting IP, configuring routing table) on VMs or OVS
(Open vSwitch) according to the content of the message and return
the operation result to the control plane.

With the help of MQ and the database shown in Fig. 2,
VITA can realize the decoupling of the control plane and the data



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL., NO., JUL 2022 5

TABLE 2: Important Notations
Notations Semantics
N the set of compute nodes
V the set of VPCs
T the set of topics

f(v) expected traffic intensity of VPC v
s(n) message processing capability of node n
b(n) traffic amount of node n

ytv
whether the controller will publish messages
of VPC v to topic t or not

ztn
whether the compute node n will subscribe
to topic t or not

Γv
n

whether the compute node n contains VMs
of VPC v or not

R(V ) total traffic amount of messages of VPCs in V

Sub(V )
the set of compute nodes which contain VMs
of any VPC in V

Φ the set of disjoint subsets of V

φ(Φ)
traffic amount reduction achieved by dividing
VPCs according to Φ

plane. That is, the control plane and data plane avoid directly
communications, and changes in the data plane will not directly
affect the control plane. The control plane needs to know not the
physical location (e.g., IP address) of the node, but the message
identity in the virtual network (e.g., VPC ID). Due to the syn-
chronous communication service provides by the message queue
server, the communication between the control plane and the
message queue is asynchronous, and we use a call-back function
to handle message processing results. In this way, the control
plane does not have to continuously wait for the processing result
when concurrent messages are sent. The communication between
compute nodes and the message queue is also asynchronous,
which indicates that the processing of the message on the compute
node does not hinder the delivery of the messages. The operation
in the data plane will not block the control plane, and will not
significantly affect the system throughput when dealing with burst
southbound traffic.

4 VITA CONTROL PLANE DESIGN

Determining the correspondence between VPCs and topics is
the key step in the VITA control plane. To achieve efficient
southbound message delivery with low message redundancy, we
first formulate the virtual network southbound message delivery
(VSMD) problem in our design. Then we present an efficient
approximation algorithm based on a submodular function and
analyze its approximation performance. Furthermore, we extend
this scheme to more practical scenarios.

4.1 Network Models
A typical cloud consists of the control plane and the data
plane. Specifically, a cluster of controllers constitute the control
plane, and are responsible for managing the network, including
southbound message delivery. The data plane consists of a set

of compute nodes, and is responsible for providing computing
resources for tenants. We use N = {n1, n2, ..., n|N |} to represent
the set of compute nodes. The set of VPCs in the cloud is denoted
as V={v1, v2, ..., v|V |}. Tenants create VPCs in the cloud by
deploying VMs on compute nodes.

We adopt the MQ model to implement southbound message
delivery. Specifically, an MQ server containing a set of queues,
serves as the messaging middlebox in a cloud and adopts the
publish/subscribe model [34], [35]. The queues are responsible
for storing and forwarding southbound messages from the control
plane to the data plane. Each queue is identified by a topic. When
the controller sends messages to one queue, we say that the con-
troller publishes messages to the topic. The compute nodes receive
messages from a queue by subscribing to the corresponding topic.
The topic set is defined as T = {t1, t2, ..., tK}, where K = |T |
is the number of queues in the MQ server.

4.2 Problem Formulation
The section gives the formulation of the virtual network south-
bound message delivery (VSMD) problem. Specifically, we use
VPC as the granularity to aggregate southbound messages. Due
to the prior work of traffic matrix prediction in clouds [36], [37],
it is reasonable to assume that we can obtain the expected traffic
intensity of southbound messages for each VPC v ∈ V , which is
denoted as f(v).

The key step of VSMD is to determine to which queue(s)
the controllers should deliver each message, and from which
queues each compute node receives messages. Thus, we use
binary variable ytv to denote whether the controller will publish
the messages of VPC v to topic t or not. Meanwhile, we use
binary variable ztn to represent whether the compute node n will
subscribe to topic t or not.

In order to deliver southbound messages successfully, we
should consider the following two constraints. 1) Each compute
node must obtain all the required messages. That is, each compute
node should receive the messages of VPC v if a VM belonging
to v is deployed on this node. The constant Γv

n indicates whether
the compute node n contains the VMs belonging to VPC v or
not. 2) The traffic amount of messages on each node should not
exceed its capacity. We use s(n) to denote the message processing
capability of node n. Once a compute node subscribes to a topic,
it will receive all the messages in this queue, which results in
message redundancy. Thus, our objective is to minimize the total
traffic amount on compute nodes (or in the data plane). We give
the following problem definition:

min
∑
n∈N

b(n)

S.t



∑
t∈T yt

v ≥ 1, ∀v ∈ V∑
t∈T ztny

t
v ≥ Γv

n, ∀n ∈ N, v ∈ V∑
t∈T

∑
v∈V ztny

t
vf(v) = b(n), ∀n ∈ N, v ∈ V

b(n) ≤ s(n), ∀n ∈ N

yt
v, z

t
n ∈ {0, 1}, ∀v, n, t

(1)

The first set of inequalities indicates that each VPC subscribes
to at least one topic. The second set of inequalities represents that
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all the VMs on any compute node should receive all the required
messages. Specifically, ztn · ytv represents whether compute node
n receives messages of VPC v through the queue specified as
topic t or not, and

∑
t∈T ztny

t
v means whether compute node

n can receive messages of VPC v or not. When Γv
n = 1,

compute node n must receive messages of VPC v. The third set
of equalities shows the message traffic amount on each compute
node n, denoted as b(n). The fourth set of inequalities expresses
the message processing capacity constraint on each compute node
n. Our objective is to minimize the total message traffic amount
on compute nodes, that is, min

∑
n∈N b(n).

Theorem 1. The VSMD problem is NP-hard.

Proof: Our VSMD problem remains NP-hard even if the
mappings between VPCs and topics are determined (i.e., variables
ytv are fixed). Under this case, the problem turns to be a Weighted
Set Covering Problem (WSCP) [38] for each compute node. More
specifically, each node tends to receive all the required messages
with as few redundant messages as possible by selecting several
weighted sets (i.e., sets of messages in different queues). Since the
Weighted Set Covering Problem is a special case of our problem,
we can conclude that the VSMD problem is NP-hard.

4.3 Algorithm Design for VSMD
4.3.1 Algorithm Overview
If the controller sends the messages of each VPC to only one
queue, the total traffic amount of messages delivered by the
controller can be minimized. Considering that the controller is
often the bottleneck in a cloud, it is reasonable to assume that
messages of each VPC are sent to only one queue. To deal with this
scenario, this section presents a submodular-based approximation
algorithm to solve the VSMD problem. We will consider the
scenario where the messages of each VPC can be forwarded to
more than one queue in the next section.

In this section, we regard that the messages of each VPC are
sent to only one queue. As a result, the VPC set can be divided
into K subsets, and each VPC in the same subset is assigned
with the same topic. Initially, all VPCs belong to the same set.
Our algorithm consists of K iterations where K is the number
of queues (i.e., the number of topics) in the MQ server. In each
iteration, we determine a subset of V that can reduce the total
traffic amount of messages the most and assign all the VPCs in
this subset with one topic.

4.3.2 Preliminaries
We first give the definition of the traffic amount of messages of
VPC set V ′ ⊆ V as follows:
Definition 1. For any VPC set V ′, the total traffic amount of

messages of all the VPCs in V ′ is
R(V ′) = |Sub(V ′)|

∑
v∈V ′

f(v) (2)

where Sub(V ′) is the set of compute nodes which contain
VMs belonging to any VPC v ∈ V ′.

We need to divide the VPCs into K sets so that messages of
each VPC will be published to one of K topics. Initially, when all

the VPCs belong to one set, the total traffic amount of messages on
all compute nodes can be expressed as R(V ) = |N |·

∑
v∈V f(v),

where |N | is the number of compute nodes. If we divide VPCs
into K sets, denoted as {V1, V2, ..., VK}, the traffic amount of all
southbound messages becomes

∑K
i=1 R(Vi). In other words, the

traffic amount of messages will be reduced as much as possible by
dividing VPCs into K sets. That means the minimization problem
in Eq. (1) can be converted into the following equivalent maxi-
mization problem in Eq. (3), where

∑K
i=1 R(Vi) =

∑
n∈N b(n).

Then the optimal solution to Eq. (3) is also the optimal solution to
Eq. (1).

maxR(V )−
K∑
i=1

R(Vi)

S.t


∑

t∈T yt
v ≥ 1, ∀v ∈ V∑

t∈T ztny
t
v ≥ Γv

n, ∀n ∈ N, v ∈ V∑
t∈T

∑
v∈V ztny

t
vf(v) ≤ s(n), ∀n ∈ N, v ∈ V

yt
v, z

t
n ∈ {0, 1}, ∀v, n, t

(3)

This problem is similar to a clustering problem, where we
need to divide the VPC set V into K clusters to maximize the
traffic amount reduction on compute nodes. Our algorithm is based
on efficient computations of a submodular set function φ, which
defines the maximum traffic amount reduction of messages by
dividing the VPCs into several sets. We give the definition of the
submodular set function φ as follows.

Definition 2. Given the set Φ, which contains disjoint subsets
of V , the traffic amount reduction of messages achieved by
dividing the VPCs according to Φ is defined as:

φ(Φ) = R(V )−
∑
S∈Φ

R(S)−R(V −M) (4)

where M is the set of VPCs that can be covered by all the sets
in Φ. That is, M =

⋃
S∈Φ S.

Next, we give the definition of submodularity, and prove that
the function φ is submodular.

Definition 3. (Submodularity): Given a finite set E, a real-valued
function z on the set of subsets of E is called submodular if
z(S∪{e})−z(S) ≤ z(S′∪{e})−z(S′) for all S′ ⊆ S ⊆ E
and e ∈ E − S.

Lemma 2. Given the set U as the power set of V , the function φ
defined in Eq. (4) is submodular on U .

Proof: Without loss of generality, we consider an arbitrary
set Φ ⊆ U and an arbitrary set A ⊆ V . Assume that A does not
intersect with other sets in Φ, i.e., A ∩ S = ∅,∀S ∈ Φ. Then, we
have
φ(Φ∪{A})−φ(Φ) = R(V−M)−R(V−M−A)−R(A) (5)

where M =
⋃

S∈Φ S. Given an arbitrary subset Φ′ ⊆ Φ, it also
follows
φ(Φ′∪{A})−φ(Φ′) = R(V−M ′)−R(V−M ′−A)−R(A) (6)

where M ′ =
⋃

S∈Φ′ S.
Note that R(V−M)−R(V−M−A)−R(A) also represents the

traffic amount reduction by dividing set V −M into two subsets:
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V −M−A and A. Since Φ′ is the subset of Φ, V −M is the
subset of V −M ′ accordingly. Thus, we have:
R(V−M)−R(V−M−A) ≤ R(V−M ′)−R(V−M ′−A) (7)

Combining Eqs. (5), (6) and (7), we know that:
φ(Φ ∪ {A})− φ(Φ) ≤ φ(Φ′ ∪ {A})− φ(Φ′) (8)

According to Definition 3, we show that the set function φ is
submodular.

To maintain the processing capacity constraint of a single
compute node n, i.e., b(n) ≤ s(n), we only focus on the set
A ⊂ V without breaking the constraint, that is,∑

v∈A

f(v) ≤ minn∈Sub(A) s(n) (9)

We call the sets satisfying Eq. (9) as feasible sets. The feasible
sets can be explored efficiently by simply performing a depth-
first search [39] on the VPC set V . During each iteration of the
depth-first search, we gradually expand the candidate feasible set
by adding untraversed VPC and simultaneously update the traffic
of the affected compute nodes.

4.3.3 Algorithm Description

Given these insights, we propose the submodular-based south-
bound message delivery algorithm (SM-SMD) in detail, which
is formally described in Alg. 1. SM-SMD consists of three steps.
In the first step, the algorithm computes a set of feasible sets Π
in advance and starts with an empty set Φ (Line 3). In the second
step (Lines 5-12), it loops through the possible feasible set S ∈ Π
to find the maximum function value φ(Φ ∪ {S}). The algorithm
performs K − 1 iterations until we obtain K sets of VPCs. In
the third step (Lines 13-17), we obtain the mapping relationship
between VPCs and topics (i.e., ytv).

Algorithm 1 SM-SMD: Submodular-based Algorithm for VSMD
1: Step 1: Initialization
2: Compute the set of feasible sets Π
3: Φ← ∅
4: Step 2: Greedy Selection
5: while |Φ| ≤ K − 1 do
6: Set tmp← 0, opt← 0
7: for S ∈ Π− Φ do
8: tmp← φ(Φ ∪ {S})
9: if tmp > opt then

10: opt← tmp, S∗ ← S
11: end if
12: end for
13: Φ← Φ+ {S∗}
14: end while
15: Φ← Φ+ {V −

⋃
S∈Φ S}

16: Step 3: Assignment of VPCs and Topics
17: i← 1
18: for S ∈ Φ do
19: Set ytiv = 1 if v ∈ S
20: i← i+ 1
21: end for

a b a bcb

c d d e

d ec

Queue 1

a b d ec

Queue 1 Queue 2

a b c

Queue 1

d e

Queue 2Queue 3

Iteration 0

φ(Φ)=0

Iteration 1

φ(Φ)=24

Iteration 2

φ(Φ)=30
a b d ec

Node 1 Node 2

Node 3 Node 4

Node 5

Fig. 3: An example of SM-SMD algorithm. There are 5 nodes, 5
VPCs, 3 queues and 15 messages to deliver (1, 2, 3, 4, and 5 messages
are sent to VPCs a, b, c, d, and e). Left: VPC distribution in 5 nodes.
Right: details of 2 iterations.

4.3.4 Performance Analysis
We analyze the approximation performance of our proposed algo-
rithm based on the following lemma.

Lemma 3. For a real-valued submodular and non-decreasing func-
tion z(S) on U , the optimization problem maxS⊆U{z(S) :
|S| ≤ K, z(S) is submodular} can reach a (1-1/e) approxi-
mation factor if the algorithm performs greedily [40].

Theorem 4. Our SM-SMD achieves a (1-1/e) approximation factor
for the maximization problem in Eq. (3).

Proof: The function φ is submodular by Lemma 2. Be-
sides, for any set Φ of subsets of V and A ⊆ V with A ∩ S =
∅,∀S ∈ Φ, it follows φ(Φ∪{A})−φ(Φ) ≥ 0, and the equal sign
is held only in the case where Sub(V −

⋃
S∈Φ S) = Sub(A).

Thus, the function φ is non-decreasing. By Lemma 3, our pro-
posed algorithm can reach a (1 − 1/e) approximation factor for
the VSMD problem in Eq. (3). For the submodular function, this
result is the best that can be achieved with any efficient algorithm.
In fact, [41] proved that any algorithm that is allowed to only
evaluate the submodular function at a polynomial number of sets
will not be able to obtain an approximation guarantee better than
(1− 1/e).

Example. We give a simple example to demonstrate the flow
of the algorithm and how it finds the optimal solution, as shown
in Fig. 3. In this example, we assume that there are 5 VPCs, 3
queues and 15 messages to deliver (1, 2, 3, 4, and 5 messages are
sent to VPCs a, b, c, d, and e, respectively). The detailed steps
of the algorithm are shown in Table 3. At the first iteration, the
maximum value of φ(Φ) we can get is 24 by dividing VPCs a,
b, and c into one set (queue 1), and VPCs d and e into another
set (queue 2). Then in the second iteration, we get the maximum
value of φ(Φ) by dividing VPCs a and b into one set (queue
1), and VPC c into another set (queue 3). As a result, we obtain
R(V )−

∑K
i=1 R(Vi) = 30, which is also the optimal solution to

Eq. (3).
We should note that the number of feasible sets may be

exponential. However, the work [42] has shown that polynomial
number of feasible sets are enough for performance optimization.
To achieve the trade-off optimization between algorithm complex-
ity and network performance, we only construct the polynomial
number (with input the number of VPCs) of feasible sets. Under
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this condition, the time complexity of SM-SMD is O(K|V |) since
the algorithm runs in K − 1 iterations, and the function φ is
calculated O(|V |) times in each iteration.

4.4 Simulated Annealing Algorithm for VSMD
The SM-SMD algorithm considers the scenarios where the control
plane may be the bottleneck in a cloud. However, in some other
scenarios, the data plane is more likely to become a bottleneck [4],
[43]. Under these scenarios, we hope to reduce more traffic amount
of messages in the data plane. To this end, we give a simulated
annealing based southbound message delivery algorithm where
southbound messages of one VPC can be sent to more than one
queue (i.e.,

∑
t∈T ytv ≥ 1). It should be noted that this algorithm

will increase the control overhead and MQ overhead compared
with SM-SMD, but reduce traffic amount on compute nodes. (i.e.,
reduce the message redundancy).

Simulated annealing [44] is a probabilistic optimization algo-
rithm which takes L, t0, tm, and α as inputs. L is the number
of iterations at each temperature T . t0 and tm are the initial
value and the end threshold of the temperature T , respectively.
α is the decreasing rate of T . The temperature T is used to
determine the probability of accepting the worse state. Note that,
the parameter selection of the simulated annealing algorithm has
been extensively studied [44], [45]. We determine the parameters
based on the work [44] to achieve a high probability for converging
to the global optimal solution.

Algorithm 2 SA-SMD: Simulated Annealing based Algorithm for
VSMD

1: Input L, t0, tm,α
2: Run SM-SMD to obtain the solution: ytv and ztn = Γv

ny
t
v

3: Init temperature T = t0, k = 0
4: while T ≥ tm do
5: while k ≤ L do
6: Select a random VPC v and a random topic t
7: Set ytv ← 1− ytv .
8: Set ∆ to be difference of total traffic amount by topic

re-selection.
9: if ∆ > 0 then

10: Set ytv ← 1− ytv with probability 1− e−
∆
T

11: end if
12: k ← k + 1
13: end while
14: Set k = 0
15: T ← αT
16: end while
17: Output the results

SA-SMD first initializes the parameters and the initial state.
As SM-SMD can obtain a feasible assignment of VPCs and topics,
SA-SMD takes the results of SM-SMD as the initial state. Then
it executes a two-level iteration. In the each round of the inner
iteration (Lines 4-11), the algorithm randomly selects a VPC and
a topic to change their mapping relationship (i.e., ytv = 1 − ytv)
(Lines 6-7) and calculates the difference in the total traffic amount
of messages on all compute nodes by re-selecting topics, denoted

Compute Node

VPC 1 VPC 2

... ...

MQ Server

Database

VPC TOPIC

1

2

... ...

Update

Query

...

Topic 1

...

Topic 2

Controller

TOPIC 1

TOPIC 2

Switch

Message

Fig. 4: Two dynamic subscription procedures of VITA agent. 1) The
VM belonging to VPC 2 is newly added. Then the agent queries the
database and subscribes to the corresponding Topic 2 (dotted yellow
line). 2) The mapping relationship of VPC 2 is switched from Topic
2 to Topic 1. Then the controller sends a switch message to Topic 2
and modifies the database (solid blue line). When the agent receives
the switch message, it will unsubscribe from Topic 2 and subscribe to
Topic 1 (solid yellow line).

as ∆ (Line 8). If ∆ ≤ 0, it means that the message redundancy
is reduced, and we accept the current state. Otherwise, we refuse
the current state with probability 1 − e−

∆
T (Lines 9-10). Each

inner iteration runs in L rounds. In the outer iteration, temperature
T is decreased by a factor α at the end of the inner iteration
(Line 13). Then, if T ≥ tm, the algorithm terminates and outputs
the final result. Otherwise, it performs a new inner iteration with
a decreased temperature. The SA-SMD algorithm is formally
described in Alg. 2.

In each round of the inner iteration, the algorithm calculates
the difference of traffic amount received by each compute node
by re-selecting topics, which costs O(|N |) time. This calculation
loops L times at each temperature T , which drops from t0 to tm
at the decreasing rate of α. Thus, we execute the calculation for
logα(tm/t0) times and the overall time complexity of SA-SMD is
O(L·logα(tm/t0)·|N |). Since the simulated annealing algorithm
utilizes the result of the submodular algorithm as input, it can
obtain a relatively good initial solution at the beginning, which
greatly increases the probability of finding the optimal solution. At
the same time, although we have no guarantee of the sub-optimal
solution accuracy, we can guarantee that the solution obtained
by SA-SMD can reduce more message redundancy than the sub-
optimal result of the submodular algorithm SM-SMD.

5 VITA AGENT DESIGN

Although the VITA controller determines the mapping relationship
between VPCs and topics, there are still two issues to consider
when implementing topic subscription for each compute node.
The first issue is that how compute nodes subscribe or unsubscribe
from relevant topics when VMs are added, removed, or migrated
on them accurately and quickly. The second issue is that when
the traffic in the network changes and the VPC and topic mapping
needs to be updated, how does the controller notify the compute
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nodes to update so that messages can be transmitted in an orderly
manner without loss. To address the two problems, this section
describes the topic subscription of the VITA agent, which offers a
stable and consistent southbound messaging service.

5.1 Dynamic Subscription
To realize the decoupling of control and data planes, we rely on
a metadata database to store the topic mapping information as
shown in Fig. 2, which enables the agent to quickly establish
a connection with the MQ server when the node initializes or
recovers from a crash. When a VM belonging to a new VPC
is added to a compute node, the agent should update the topics
subscribed by this node. To achieve the dynamic subscription, the
agent first gets the VPC to which the VM belongs. If it has not
subscribed to the related topic, the agent will query the database
and get the corresponding topic. Then it subscribes to this topic
and begins to receive messages from the corresponding queue. The
same operation will also be performed when a VM is migrated
or updated. With the help of the database and MQ server, the
control plane and the data plane are completely decoupled, and
the compute node does not need to frequently send requests to the
controller.

We illustrate this dynamic subscription procedure more in-
tuitively with an example, as shown in Fig. 4. There are two
VPCs (VPC 1 and 2) in Fig. 4 and two related topics (Topic
1 and 2). The compute node contains two VMs, one of which
is a newly added VM belonging to VPC 2. To obtain the topic
corresponding to VPC 2, the VITA agent queries the database and
gets Topic 2 as a result. Since the agent has not subscribed to
Topic 2 yet, it subscribes to this topic and receives messages from
the corresponding queue (represented by dotted yellow lines).
This way, compute nodes can implement dynamic subscriptions
without communicating with the controller.

5.2 Seamless Switching
Considering the dynamics of user requests and network environ-
ment, the VITA controller will periodically run the algorithms in
Section 4 to update the subscription relationship between VPCs
and topics to ensure the efficiency of the VITA system. However,
this operation may result in high message delay or message loss.
If the control plane cannot notify the data plane to switch topics
in time when the mapping relationship between VPCs and topics
changes, the message delivery delay will increase significantly
due to the decoupling of the control plane and the data plane.
Moreover, message loss occurs when a node does not wholly
receive the messages stored in the subscribed queue.

To solve these two problems, we design a new message type
called switch message. The switch message includes
the previous and next topics for one VPC. When the VITA
controller updates the mapping relationship between a VPC and
a topic, it will first modify the database. Then the controller
constructs a switch message and sends it to the MQ server
with the previous topic. On receiving the switch message,
the messages in the previous queue have been entirely consumed.
Then, the agent unsubscribes from the previous topic if it is no

longer needed and subscribes to the new topic if it has not been
subscribed before. Through the switch message, the agent
can switch seamlessly and timely without message loss.

Fig. 4 also illustrates the switching procedure, where the
mapping relationship of VPC 2 is switched from Topic 2 to Topic
1. The controller firstly updates the database and sends a switch
message (VPC 2 : from Topic 2 to Topic 1) to Topic 2 (represented
by solid blue lines). When the agent receives the switch message
from Topic 2, it will unsubscribe from Topic 2 and then subscribe
to Topic 1 immediately (represented by the solid yellow line). This
way, the agent achieves seamless topic switching and receives all
the required messages.

6 PERFORMANCE EVALUATION

6.1 Performance Metrics and Benchmarks
This paper studies how to deliver southbound messages in
clouds with low control overhead and low message redundancy.
The code is open-source and available at https://github.com/
futurewei-cloud/vita. We adopt five main metrics for performance
evaluation. (1) The control overhead represents the resource con-
sumption of the controller for southbound message delivery. In the
testbed experiment, we measure the controller’s CPU utilization
during system running as the control overhead. Meanwhile, we
record the total traffic amount of messages sent by the controller
as the control overhead in large-scale simulations. (2) The MQ
overhead indicates the resource consumption of the MQ server
to process southbound messages. According to [23], disk I/O
utilization is the main performance bottleneck of the MQ server.
Thus, we use disk I/O utilization as the MQ overhead in the
testbed experiment. As for large-scale simulations, we measure
the total traffic amount of the messages through the MQ server
as the MQ overhead. (3) The total traffic amount of all compute
nodes. (4) The maximum traffic amount of all compute nodes. We
measure the total traffic amount of southbound messages received
by each compute node, and calculate the total (or maximum) value
of all compute nodes as the third (or the fourth) metric. (5) The
average message delivery delay. We record the time interval from
the controller sending the southbound message to the compute
node receiving the message as the message delivery delay. We
compute the average delivery delay of all messages during the
system running as this metric.

In this paper, we propose two message aggregation and distri-
bution algorithms, SM-SMD and SA-SMD, based on VITA. We
denote the corresponding schemes as VITA-SM and VITA-SA,
respectively. Specifically, considering that the performance of a
simulated annealing algorithm generally depends on values of the
parameters, we set our algorithm parameters as in [46], where L
is 16 times the number of VPCs, t0 = 1000, tm = 0.05 and
α = 0.95. To evaluate the performance of our VITA-SM and
VITA-SA, we choose the following three state-of-the-art solutions
as benchmarks.

1) The first one is RPC [12], which is a widely used method
in distributed microservice framework for communications
between servers and clients. In clouds, RPC establishes TCP
connections between the controller and all compute nodes.
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Fig. 5: Control Overhead, MQ Overhead, Total and Maximum Traffic vs. Number of VPCs.

Messages are sent from the controller to corresponding com-
pute nodes one by one.

2) The second one is NG [24], which performs southbound
message delivery using message queues. To deal with a
limited number of message queues on the server, compute
nodes are divided into certain groups according to a certain
attribute (such as physical location). The nodes in the same
group will subscribe to a same topic (i.e., queue) and receive
the same messages.

3) The third one is denoted as VITA-KM. Since there is no exact
work about southbound message delivery based on virtual
network topology, we use the classic clustering algorithm, K-
means [47], to aggregate and distribute messages with VPC
as the granularity. VITA-KM takes the number of topics as
the input k, and divides the set of VPCs into k clusters.

6.2 Simulation Evaluation
We refer to a practical private cloud deployed in CERN (European
Organization for Nuclear Research) [6] to design our simulation.
The CERN private cloud contains 5,500 compute nodes. We
change the scale of the virtual network by varying the number
of VPCs from 1 × 104 to 9 × 104. We assume that the VMs
are distributed on the compute nodes randomly, and the number
of topics is set to 1,100 by default. As a result, NG divides the
compute nodes into 1,100 groups, and each group contains 5
compute nodes. The default expected message traffic intensity for
each VPC is set as 1Mbps. Moreover, we use power law for the
message-size distribution, where 20% of all messages account for
80% of traffic volume as observed in [48].

To analyze the performance of VITA-based algorithms in
different cloud scenarios, we test the scalability performance by
scaling the number of VPCs in the public cloud and by expanding
the expected message traffic of each VPC in the private cloud. In
the first set of simulations, we observe the control overhead, the
MQ overhead, and the total/maximum traffic amount on compute
nodes by changing the number of VPCs in the cloud. The results
are shown in Figs. 5(a)-5(d). Specifically, Fig. 5(a) shows that
the control overhead of all solutions increases with the increasing
number of VPCs, and the growth rate of VITA-based solutions is
significantly slower than that of RPC and NG. For example, given
7×104 VPCs, the control overheads of VITA-SM, VITA-KM, and
VITA-SA are 3.6Gbps, 3.6Gbps, and 6.8Gbps, respectively, while
those of RPC and NG are 35.1Gbps and 17.5Gbps, respectively. It
means that VITA-based solutions can reduce the control overhead

by over 80% and 60% compared with RPC and NG, respectively.
That is because the more messages delivered by the controller,
the higher its control overhead. Specifically, the controller directly
communicates with compute nodes by RPC, and each compute
node only receives the required messages. NG reduces the control
overhead by 50.1% compared with RPC by adopting the MQ
model but still results in a higher control overhead compared
with VITA-based solutions. The reason is the nodes are grouped
based on the physical network topology, resulting in significant
differences in required messages of nodes in the same group. As
for three VITA-based solutions, both VITA-SM and VITA-KM
can reduce the control overhead by about 47% compared with
VITA-SA. That is because VITA-SA may send the same message
to multiple queues, while VITA-SM and VITA-KM only send each
message to exactly one queue.

Fig. 5(b) shows the MQ overhead of NG and three VITA-
based algorithms by changing the number of VPCs. Note that we
do not evaluate this metric for RPC since RPC does not use the
MQ model. The results of the MQ overhead are of a similar trend
with those of the control overhead for these algorithms. That is
because both control overhead and MQ overhead are positively
correlated with the total traffic amount of southbound messages.
For instance, when there are 5× 104 VPCs, the MQ overheads of
VITA-SM, VITA-KM, and VITA-SA are 2.5Gbps, 2.5Gbps, and
4.9Gbps, respectively, while that of RPC is 12.4Gbps. That is, both
VITA-SM and VITA-KM can reduce the MQ overhead by about
79.8% and 60.5% compared with NG and VITA-SA, respectively.

Figs. 5(c)-5(d) show that the total/maximum traffic amount
on compute nodes increases for all solutions with the increasing
number of VPCs. RPC and NG achieve the lowest and high-
est total/maximum traffic amount on compute nodes among all
solutions, respectively. That is because RPC using the direct
communication method will not cause message redundancy, while
NG using a physical host-based grouping scheme will result in
high redundancy. Note that, since RPC will cause an unacceptable
control overhead as shown in Fig. 5(a), it is not feasible in
large-scale clouds. We use the total/maximum traffic amount on
compute nodes of RPC as the low bound to compare with other
solutions. For example, given 6×104 VPCs in the cloud, the total
traffic amount on compute nodes is 61Gbps, 65Gbps, and 90Gbps
for VITA-SA, VITA-SM, and VITA-KM, respectively, while that
of NG is 198Gbps. These results mean that VITA-SM reduces the
total traffic amount on compute nodes by 29% and 66% compared
with VITA-KM and NG, respectively, while slightly increases the
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Fig. 6: Control Overhead, MQ Overhead, Total and Maximum Traffic vs. Message Sending Rate.
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Fig. 7: Control Overhead, MQ Overhead, Total and Maximum Traffic vs. Number of Topics.

traffic amount on compute nodes by 6% compared with VITA-
SA. The total/max traffic amount on compute nodes of VITA-SA
is lower than that of VITA-SM because it sends messages to more
queues with higher control overhead to achieve lower message
redundancy.

The second set of simulations shows the performance of the
proposed algorithms under different expected traffic intensities.
Figs. 6(a)-6(d) shows the control overhead, the MQ overhead, and
the total/maximum traffic amount on compute nodes by changing
the message sending rate of each VPC from 1Mbps to 9Mbps.
The number of VPCs is set as 1× 104 by default. As the message
sending rate increases, all performance metrics (i.e., control over-
head, MQ overhead, total and maximum traffic amount) increase
for all algorithms, with VITA-based solutions achieving better
performance than the other solutions. For example, when the
message sending rate of each VPC reaches 6Mbps, the control
overhead of VITA-SM is 2.5Gbps, while the control overhead
of RPC and NG is 25Gbps and 10.6Gbps, respectively. More
specifically, VITA-SM reduces the control overhead by about
90% and 40% compared with RPC and NG, respectively. Among
VITA-based solutions, VITA-SM works better than VITA-KM
with the message sending rate increasing. Meanwhile, VITA-SA
has a higher control/MQ overhead compared with VITA-SM but
a lower total/max traffic amount. It means that VITA-SA trades
for lower message redundancy by sacrificing a small amount of
control plane resources compared with VITA-SM.

Since the number of topics greatly impacts the algorithms’
performance, we compare NG, VITA-SA, VITA-KM, and VITA-
SM by changing the number of available queues (topics) in the

MQ server. The results are shown in Figs. 7(a)-7(d), where the
horizontal axis is the number of topics in the MQ server, ranging
from 1× 103 to 10× 103.

Figs. 7(a) and 7(b) show the control/MQ overhead with the
number of topics increasing. In comparison, the proposed VITA-
SM solution has the lowest control/MQ overhead. For example,
given 5×103 topics, the control overhead of VITA-SM is 0.5Gbps
while that of RPC is 5Gbps; the MQ overhead of VITA-SM is
0.5Gbps while that of NG is 4.8Gbps. More specifically, VITA-SM
reduces the control/MQ overhead by about 90% compared with
NG, and VITA-KM has the same control/MQ overhead as VITA-
SM. That is because both VITA-SM and VITA-KM will only send
each message to the corresponding topic once. The control/MQ
overhead of VITA-SA is slightly higher than VITA-SM since it
may send a message to multiple topics. Figs. 7(c) and 7(d) show
that the total/maximum traffic on compute nodes of NG, RPC,
VITA-SM, VITA-SA, and VITA-KM decreases as the number of
VPCs increases. However, RPC has the minimum traffic amount
on nodes since no redundant message is received. NG has the
highest total/maximum traffic on nodes when topics are less than
4 × 103. For example, when there are 3 × 103 topics, the total
traffic for NG, RPC, VITA-SM are 33Gbps, 28Gpbs, 20Gpbs, and
the maximum traffic on each node for NG, RPC, VITA-SM are
0.35Gbps, 0.3Gbps, and 0.21Gbps, respectively. Note that when
the number of topics is more than 5500, we can assign a topic for
each node. Thus, each node will not receive redundant messages
from other nodes, and the performance of NG will be the same as
RPC.

From these simulation results, we can draw some conclu-
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(d) Throughput vs. MQ Type

Fig. 8: The performance of proposed algorithms using different MQs.
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(d) Total Traffic vs. No. of Topics

Fig. 9: Control Overhead, MQ Overhead, Average Message Delay and Total Traffic vs. Number of Topics

sions. First, as shown in Fig. 5(a), RPC is not feasible in large-
scale clouds because it will cause unacceptable control overhead.
Second, as shown in Figs. 5(a)-6(d), VITA-based solutions can
achieve superior performance, including lower control/MQ over-
head and lower total/max traffic amount compared with NG. Third,
VITA-SM reduces the total/maximum traffic amount by 29%/37%
and achieves similar control/MQ overhead performance compared
with VITA-KM. Fourth, compared with VITA-SA, VITA-SM
reduces the control/MQ overhead by 47%/49% and increases the
total/maximum traffic amount by 6%/15%. Fifth, as shown in Figs.
7(a)-7(d), VITA-based solutions outperform NG with different
number of topics, especially when the number of topics is small.

6.3 System Implementation
6.3.1 Implementation on the Platform
In general, we use 10 servers running Ubuntu 18.04 with Linux
kernel 5.4 to build the testbed. All the servers are equipped with a
22-core Intel Xeon 6152 processor, 128GB memory and an Intel
X710 10GbE NIC. Among them, two servers are used as the con-
troller and the message queue server, respectively. We take a small
cloud deployed in GoDaddy [49] as a reference, which contains
350 compute nodes. We rely on the virtualization technology for
system implementation to expand the testing topology and collect
testing data conveniently. Specifically, we deploy 350 VMs, each
equipped with 1 vCPU and 1GB memory, as compute nodes on
the remaining 8 servers. The number of VPCs and topics is by
default set to 300 and 100.

We run three sets of experiments on the platform. The expected
traffic intensity for messages of each VPC is set to 1Mbps and the
bandwidth constraint of each compute node is 1Gbps by default.
The message-size distribution is the same as in simulations where
20% of all messages account for 80% of traffic amount. These

messages are distributed in size from 512Bytes to 4MB. According
to [50], we generate two types of messages: (1) unicast messages,
whose sources and destinations are randomly picked, e.g., IP
address segment configuration messages; (2) multicast messages,
which simulate the traffic with multiple destinations, e.g., subnet
and security group configuration messages. Each type of message
accounts for half of the total traffic amount.

6.3.2 Test Results

The first set of experiments compares the overall performance of
all benchmarks using three well-known MQ frameworks. Specifi-
cally, we take three open-source MQ frameworks for comparison:
Apache Kafka (version 2.6.0) [51], RabbitMQ (version 3.8.19)
[30], and Apache Pulsar (version 2.6.1) [52]. Kafka is the most
widely deployed open-source MQ framework, and RabbitMQ
is used in OpenStack. As for Pulsar, it is one of the fastest-
growing MQ frameworks in recent years. The physical parameter
settings of these MQ frameworks are the same as in [23]. We set
100 topics for each MQ framework and generate 200 VPCs by
default. As shown in Fig. 8, VITA-SM performs better compared
with NG and VITA-KM in all three MQ frameworks. Moreover,
VITA-SM achieves lower control/MQ overhead, but results in
higher message delay and higher total traffic amount on compute
nodes than VITA-SA. That means, VITA-SM is more suitable for
scenarios with limited processing capacity on the control plane
or the MQ server, while VITA-SA is more suitable for scenarios
with limited processing capacity on compute nodes. Note that,
as shown in Figs. 8(c)-8(d), RabbitMQ achieves the lowest total
traffic amount, while achieves the smallest message delivery delay,
compared with the other two frameworks. The reason is that
RabbitMQ aims to obtain low message transmission delay, while
the total throughput cannot be guaranteed. To save the space, we
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Fig. 10: Control Overhead, MQ Overhead, Average Message Delay and Total Trafiic vs. Number of VPCs
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Fig. 11: Control Overhead, MQ Overhead, Average Message Delay and Total Trafiic vs. Message Seding Rate per VPC

only conduct a detailed performance comparison of all solutions
when using Kafka in the following since it is the most widely used
framework.

The second set of experiments observes the control/MQ over-
head, average message delay, and total traffic amount of NG,
VITA-SA, VITA-KM and VITA-SM by changing the number of
available topics in the MQ server. The results are shown in Fig.
9, where the horizontal axis is the number of topics in the MQ
server, ranging from 50 to 300. No matter how many topics there
are in the MQ server, NG always achieves the worst performance
compared with other solutions. For example, as shown in Fig.
9(b), given 200 topics, the average disk I/O utilization of VITA-
SM, VITA-KM, VITA-SA and NG is 34%, 38%, 40% and 63%,
respectively. That is, VITA-SM can reduce the average disk I/O
utilization by about 10.5%, 15% and 46% compared with VITA-
KM, VITA-SA and NG, respectively. We should note that, as
shown in Fig. 9(c), when the number of topics exceeds 200, the
average message delay will increase significantly as the number
of topics increases. That means the MQ server can only support
a limited number of topics. Thus, we should carry out message
aggregation with a proper granularity.

The third set of experiments compares the control/MQ over-
head, average message delay, and total traffic amount of NG,
VITA-SA, VITA-KM and VITA-SM by changing the number of
VPCs in the cloud. The results are shown in Fig. 10, where the
number of VPCs ranges from 200 to 1,200. As the number of
VPCs increases, all performance metrics (e.g., control overhead,
MQ overhead, message delay and total traffic amount) increase
for all algorithms. NG always achieves the worst performance
compared with the other three VITA-based solutions. For example,
when the number of VPCs reaches 1000, the average message

delay of NG, VITA-SA, VITA-KM and VITA-SM is 54ms, 29ms,
45ms and 34ms. That means, VITA-SM can reduce the average
message delay by 37% and 24.4% compared with NG and VITA-
KM, respectively. VITA-based solutions are more efficient com-
pared with NG, since southbound messages usually have VPC
attributes, and VITA-based solutions aggregate messages with
VPC as the granularity.

The fourth set of experiments shows the control/MQ overhead,
average message delay, and total traffic amount of NG, VITA-SA,
VITA-KM, and VITA-SM by changing sending rate of messages
in the cloud. The results are shown in Fig. 11, where the message
sending rate per VPC varies from 1Mbps to 6Mbps. As the mes-
sage sending rate increases, all performance metrics (e.g., control
overhead, MQ overhead, message delay, and total traffic amount)
increase for all algorithms, with NG always achieving the worst
performance compared with the other three VITA-based solutions.
For example, when the message sending rate per VPC reaches
4Mbps, the total traffic amount of NG, VITA-SA, VITA-KM,
and VITA-SM is 1.64Gbps, 1.01Gbps, 1.23Gbps, and 9.2Gbps,
respectively. That means VITA-SM can reduce the total traffic
amount on compute nodes by about 38.4% and 17.9% compared
with NG and VITA-KM, respectively. VITA-SA and VITA-SM
work better than the other two algorithms at different message
sending rates. Meanwhile, VITA-SM saves more resources in the
control plane (e.g., CPU resources of the controller), while VITA-
SA cares more about the data plane (e.g., bandwidth of compute
nodes).

From these experimental results, we can draw some conclu-
sions. First, as shown in Fig. 8, VITA-SM performs better in all
three MQ frameworks compared with NG and VITA-KM, and
achieves similar performance compared with VITA-SA. Second,
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Fig. 9 illustrates that the MQ server can only support a limited
number of topics. Thus, we have to aggregate messages with a
proper granularity. Third, the performance of NG lags behind
all three VITA-based solutions for all metrics (e.g., control/MQ
overhead, message delay and traffic amount on compute nodes).
Fourth, our proposed VITA-SM performs better than VITA-KM,
especially in the metrics of message delay and total traffic amount,
which shows efficiency of our proposed message aggregation
algorithm. Fifth, our proposed VITA-SM and VITA-SA algorithms
have different application scenarios. If the control/MQ overhead
become the network bottleneck, VITA-SM is a better choice
compared with VITA-SA. Conversely, if resources on compute
nodes are the network bottleneck, VITA-SA is a better choice
compared with VITA-SM.

7 RELATED WORKS

In this section, we summarize recent research works on cloud
computing, virtualization technologies, and prior efforts on mes-
sage queue.

Cloud Computing. Research on cloud computing is popular
in recent years. Different from classic networks, cloud computing
is gaining a great scope towards IT industries, academics, and
individual users because of its ease of use, on-demand access
to network resources, minimal management cost [53]. Some
works propose new cloud network architectures [4], [9], [54] to
support fast-growing user scale and traffic demand. Some works
apply VM scheduling policies [55], [56], [57] to achieve energy
efficiency and minimize task/flow completion times. Some works
propose on-demand routing protocols [58], [59], [60] to achieve
high bandwidth and low latency in clouds. Distributed services
produce significant network traffic inside clouds. To address it,
some resource management frameworks [7], [61], [62], [63] are
proposed. However, such frameworks will add more complexity
and control overhead to the whole cloud network management.

Virtualization. Virtualization technologies partition hardware
and thus provide flexible and scalable computing platforms. Vir-
tual machine techniques, such as VMware [64] and Xen [65],
offer virtualized IT-infrastructures on demand. Virtual network
advances, such as VPN [32], [33] and VPC [26], [31], [32],
support users with a customized network environment to ac-
cess cloud resources. Virtualization techniques are the bases of
cloud computing since they render flexible and scalable hardware
services. Some propose new underlying technologies [4], [66],
[67] to simplify cloud virtualization. Some utilize virtualization
for security [53], [68], [69], [70] in cloud networks. Moreover,
cloud computing platforms (e.g., OpenStack [24],CloudStack [71],
Eucalyptus [72], OpenNebula [73]), are mainly deployed in public
and private clouds as an infrastructure-as-a-service (IaaS), provid-
ing virtual servers and other resources to users.

Message Queue. The idea of using Message Queue (MQ)
in clouds or data centers has emerged since one decades ago
but lacked attention until the recent rapid expansion of cloud
network scale [19], [74], [75]. Eqs [76] presents an elastic message
queue architecture and a scaling algorithm that can be adapted
to any message queue to make it scale elastically. The authors

of [77] propose a hybrid decentralized practical byzantine fault
tolerance blockchain Framework with two-step verification for
OpenStack message queue service. WaggleDB [78] builds a set
of protocols and a cloud-based data streaming infrastructure in
case that each tier can be scaled by adding more independent
resources provisioned on-demand in the cloud. However, all these
MQ frameworks are either not user-friendly or not paying attention
to the redundancy problems caused by MQ.

8 CONCLUSION

In this paper, we give the system overview of VITA and formulate
the VSMD problem for minimizing the total amount of messages
received by compute nodes. We propose a submodular-based algo-
rithm for this problem and analyze its approximation performance.
We further consider how to extend this scheme for more scenarios.
Both the simulation and experimental results show high efficiency
of our proposed VITA system.
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